Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

N-[4-Ferrocenyl-5-(1H-1,2,4-triazol-1-yl)-1,3-thiazol-2-yl]-2-nitrobenzamide

Ling Shao, Xin Zhou, Yan Hu and Jian-Xin Fang*

State Key Laboratory and Institute of ElementoOrganic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail:
shaoling1999@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.049$
$w R$ factor $=0.115$
Data-to-parameter ratio $=14.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}\right)\right]$, has been synthesized as a potential anticancer agent. There are two molecules in the asymmetric unit. In the crystal structure, the molecules are associated via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

2-Amino-1,3-thiazoles are known as synthetic intermediates and therapeutic agents. Two examples are 5-arylthio-2-acyl-amino-1,3-thiazoles, known to be antitumour agents (Matsuo et al., 1990), and 2-(arylmethylcarbonylamino)-1,3-thiazole derivatives, known to be cyclin-dependent kinase inhibitors (Pevarello et al., 2004). The ferrocenyl group has been invoked as a bonus in the design of new biologically active molecules, as it is neutral, chemically stable, non-toxic and able to cross cell membranes (Dombrowski et al., 1986). In our search for novel thiazole compounds with potential anticancer activity, we intend to synthesize thiazole compounds incorporating the ferrocenyl unit. In this paper, we report the crystal structure of the title compound, (I).

(I)

(II)

The asymmetric unit of (I) consists of two molecules, A and B (Figs. 1 and 2). The molecules have five planar subunits, namely the thiazole ring $(P 1)$, the 2-nitrophenyl ring, C17-C22 $(P 2)$, the triazole ring ($P 3$), the substituted cyclopentadienyl ring, $\mathrm{C} 4-\mathrm{C} 8(P 4)$, and the cyclopentadienyl ring, $\mathrm{C} 9-\mathrm{C} 13(P 5)$. The dihedral angles between $P 1$ and $P 2, P 2$ and $P 3, P 3$ and $P 4$ in molecule A are 66.7 (2), 51.7 (3) and 15.5 (2) ${ }^{\circ}$, respectively. The corresponding angles in molecule B are 76.3 (3), 80.0 (2) and $20.8(3)^{\circ}$, respectively.

The $\mathrm{Fe}-\mathrm{C}$ (Table 1) are comparable with those in 2-amino-4-(ferrocenyl)-5-(1H-1,2,4-triazol-1-yl)-1,3-thiazole, [2.015 (4)-2.048 (3) \AA; Shao et al., 2005]. The cyclopentadienyl rings are in the eclipsed geometry, as evidenced by the $\mathrm{C} 4-$ $C g 1-C g 2-\mathrm{C} 9$ torsion angle of 2.2 (3) ${ }^{\circ}$ in molecule A, where $C g 1$ and $C g 2$ are the centroids of the $\mathrm{C}_{5} \mathrm{H}_{4}$ and $\mathrm{C}_{5} \mathrm{H}_{5}$ rings, respectively. The corresponding angle in molecule $B, \mathrm{C} 26-$ $C g 3-C g 4-$ C31, is $-9.0(4)^{\circ}$. However, in compound (II), they are not eclipsed (Shao et al., 2005).

In compound (I), the molecules are associated via N $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2 and Fig. 3).

Received 1 November 2005 Accepted 1 December 2005 Online 7 December 2005

Figure 1
One of the two independent molecules of (I), showing displacement ellipsoids at the 30% probability level.

Figure 2
The second of the two independent molecules of (I), showing displacement ellipsoids at the 30% probability level.

Experimental

2-Nitrobenzoyl chloride (2 mmol) was added to a solution of 2-amino-4-(ferrocenyl)-5-(1H-1,2,4-triazol-1-yl)-1,3-thiazole $(1.8 \mathrm{mmol})$ in dry pyridine $(15 \mathrm{ml})$. After stirring for 8 h , the reaction mixture was poured into water $(200 \mathrm{ml})$. After 2 d , the precipitate was collected, washed with water and dried. After recrystallization from ethanol, the title compound was obtained (yield 46\%). Analysis calculated for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{FeN}_{6} \mathrm{O}_{3} \mathrm{~S}$: C 53.71, H 3.53, N 16.34%; found: C53.68, H 3.73, N 16.63\%.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{~S}\right)\right]} \\
& M_{r}=500.32 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=11.9851(15) \AA \\
& b=28.541(4) \AA \\
& c=13.4467(17) \AA \\
& \beta=111.046(2)^{\circ} \\
& V=4292.8(9) \AA^{3} \\
& Z=8
\end{aligned}
$$

$D_{x}=1.548 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3749 reflections
$\theta=2.7-22.5^{\circ}$
$\mu=0.84 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, red
$0.26 \times 0.20 \times 0.16 \mathrm{~mm}$

Figure 3
A packing diagram for (I), viewed down the a axis. Dashed lines indicate the hydrogen bonds.

Data collection

Bruker SMART CCD area-detector	8783 independent reflections
\quad diffractometer	4708 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.073$
Absorption correction: multi-scan	$\theta_{\max }=26.5^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996 $)$	$h=-14 \rightarrow 14$
$T_{\min }=0.802, T_{\max }=0.878$	$k=-35 \rightarrow 29$
24210 measured reflections	$l=-16 \rightarrow 9$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.115$
$S=0.99$
8783 reflections
601 parameters

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Fe} 1-\mathrm{C} 13$	$2.023(4)$	$\mathrm{Fe} 2-\mathrm{C} 27$	$2.015(4)$
$\mathrm{Fe} 1-\mathrm{C} 7$	$2.024(4)$	$\mathrm{Fe} 2-\mathrm{C} 28$	$2.022(4)$
$\mathrm{Fe} 1-\mathrm{C} 8$	$2.025(4)$	$\mathrm{Fe} 2-\mathrm{C} 32$	$2.024(5)$
$\mathrm{Fe} 1-\mathrm{C} 12$	$2.025(5)$	$\mathrm{Fe} 2-\mathrm{C} 33$	$2.028(4)$
$\mathrm{Fe} 1-\mathrm{C} 9$	$2.032(4)$	$\mathrm{Fe} 2-\mathrm{C} 31$	$2.029(5)$
$\mathrm{Fe} 1-\mathrm{C} 6$	$2.033(4)$	$\mathrm{Fe} 2-\mathrm{C} 34$	$2.032(5)$
$\mathrm{Fe} 1-\mathrm{C} 10$	$2.038(4)$	$\mathrm{Fe} 2-\mathrm{C} 26$	$2.043(4)$
$\mathrm{Fe} 1-\mathrm{C} 11$	$2.042(4)$	$\mathrm{Fe} 2-\mathrm{C} 29$	$2.043(4)$
$\mathrm{Fe} 1-\mathrm{C} 5$	$2.045(4)$	$\mathrm{Fe} 2-\mathrm{C} 35$	$2.046(5)$
$\mathrm{Fe} 1-\mathrm{C} 4$	$2.052(4)$	$\mathrm{Fe} 2-\mathrm{C} 30$	$2.057(4)$
$\mathrm{C} 14-\mathrm{N} 1-\mathrm{C} 2-\mathrm{S} 1$	$49.5(5)$	$\mathrm{C} 36-\mathrm{N} 7-\mathrm{C} 24-\mathrm{S} 2$	$98.6(4)$
$\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 2-\mathrm{S} 1$	$-126.5(3)$	$\mathrm{N} 8-\mathrm{N} 7-\mathrm{C} 24-\mathrm{S} 2$	$-77.6(4)$
$\mathrm{C} 16-\mathrm{N} 5-\mathrm{C} 3-\mathrm{S} 1$	$1.8(5)$	$\mathrm{C} 38-\mathrm{N} 11-\mathrm{C} 25-\mathrm{S} 2$	$3.1(6)$
$\mathrm{N} 4-\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 5$	$14.9(5)$	$\mathrm{N} 10-\mathrm{C} 23-\mathrm{C} 26-\mathrm{C} 27$	$-20.3(5)$
$\mathrm{C} 3-\mathrm{N} 5-\mathrm{C} 16-\mathrm{O} 1$	$4.2(6)$	$\mathrm{C} 25-\mathrm{N} 11-\mathrm{C} 38-\mathrm{O} 4$	$-13.4(7)$
$\mathrm{N} 5-\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 22$	$66.1(5)$	$\mathrm{N} 11-\mathrm{C} 38-\mathrm{C} 39-\mathrm{C} 44$	$-76.6(5)$

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{~N} 9^{\mathrm{i}}$	0.85 (3)	2.13 (4)	2.952 (4)	160 (4)
$\mathrm{N} 11-\mathrm{H} 11 A \cdots \mathrm{~N} 3^{\text {ii }}$	0.85 (3)	2.10 (4)	2.932 (4)	165 (3)
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 4^{\text {i }}$	0.93	2.48	3.333 (3)	153

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $x+1, y, z$.

The amino H atoms were located in a difference Fourier map and refined isotropically, with the distance restraint $\mathrm{N}-\mathrm{H}=0.85$ (3) A. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$, and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (grant Nos. 29872022 and 20172030) and the Key Project of the Chinese Ministry of Education (grant No. 105046).

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Dombrowski, K. E., Baldwin, W. \& Sheats, J. E. (1986). J. Organomet. Chem. 302, 281-306.
Matsuo, M., Ogino, T., Igari, N., Seno, H. \& Shimomura, K. (1990). EP Patent 0412404.

Pevarello, P., Amici, R., Villa, M., Salom, B., Vulpetti, A. \& Varasi, M. (2004). US Patent 20046784198.
Shao, L., Hu, Y., Zhou, X., Zhang, Q. \& Fang, J. X. (2005). Acta Cryst. E61, m1269-m1271.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

